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Coulomb and exchange correlations, providing information for the interactions of antiparallel and parallel
spin electrons, respectively, are investigated in orbitals appropriate for population analysis, such as the natural
atomic orbitals (NAOs). In the proposed analysis, both correlations are treated on an equal footing in
configuration interaction (CI) (or Hartree-Fock) levels, but an emphasis is given for coulomb correlations
and their physical meaning. It is stressed that the two-center interactions of antiparallel spin electrons can be
“repulsive” and “attractive” (as a direct consequence of chemical bonding), but the former are less important
than the latter; their relative importance is determined by the magnitude of one-center interactions. These
globally attractive two-center interactions are balanced by the repulsive one-center interactions. These
conclusions are general and hold for any molecular system, under the only assumption that the one-center
interactions are repulsive. Molecular orbital wave functions for thecis-butadiene molecule (in various
approximations levels) are used to illustrate the relative role of coulomb and exchange interactions in chemical
bonding. The magnitudes of exchange interactions are significantly larger (2-4 times) than those of the
coulomb interactions; the signs of two-center coulomb and exchange correlations are opposite. Even though
the CI is very crucial for coulomb interactions, the exchange interactions, in general, are not so sensitive. The
provided description for chemical bonding is consistent with usual chemical pictures involving electron pairs.

1. Introduction

One-electron population analysis is widely used, and the
majority of quantum chemical investigations contain or refer
to results of such an analysis. Among the various ways to
perform population analysis in orbital space, one can cite the
natural population analysis (NPA),1,2 which shows a very good
stability with the extension of the SCF-AO basis set. NPA is
based in natural atomic orbitals (NAOs), which are “natural”
in the Lowdin sense (and orthogonal), and natural bond orbitals
(NBOs), which are directly issued from NAOs. This kind of
analysis is widely used in various types of current chemical
topics.3

Beyond one-electron distributions, the theoretical grounds of
second-order density matrices are well known,4 and their role
in the description of usual molecular systems is well estab-
lished.5 A second-order density matrix can be divided into
coulomb and exchange parts; the former concerns the interaction
of antiparallel spin electrons and the latter the interaction of
parallel spins. Various schemes of pair populations are used,6-11

giving new insights for chemical bonding in the framework
mainly of noncorrelated (semiempirical or ab initio) wave
functions. The using of exchange correlations in the examination
of fluctuations of electronic populations in orbital space led to
the reconciliation of quantum mechanical and classical pic-
tures.12 Bond orders directly proportional to exchange correla-
tions are used7-9 in the framework of generalized Wiberg
indices.13,14Correlation analysis of bonds applied for Hartree-
Fock wave functions allows the investigation of basic features
of chemical reactivity.15 The behavior of parallel spin electrons
is also investigated by means of electron localization function
(ELF).16 The topological analysis of ELF leads to distinguish
attractors and basins with a clear chemical meaning and
investigate the exchange correlation, appearing as the variance

of basin populations.17,18The topological examination in physi-
cal (coordinate) space of Fermi holes,19,20 which are directly
related to exchange correlations, leads to physically meaningful
investigation of (de)localization of electrons. Apart from the
above cited works concerning essentially the behavior of parallel
spin electrons, systematic studies referring to population analysis
and correlation of electron pairs of antiparallel spin (coulomb
interactions) are scarce, mainly because this type of analysis
necessitates correlated molecular wave functions. Recently,
coulomb correlation is studied in the H2 model system,21 and
its effect on the Lewis electron pair within the topological
definition of atoms in coordinate space22 is also investigated.

The purpose of the present work is to investigate both
coulomb and exchange correlations in an orbital space appropri-
ate for population analysis, as the space of NAOs. In the
proposed analysis, coulomb and exchange parts of second-order
density matrices are treated on an equal footing. However, an
emphasis is given to the coulomb part (and its physical
meaning), because the corresponding type of interactions have
not been explored sufficiently. Exchange interactions are also
considered and compared with the coulomb interactions. The
cis-butadiene molecule is used as an example to illustrate the
role of coulomb and exchange correlations within various levels
of approximations.

The first part of our analysis necessitates the calculation of
electron pair distributions from correlated wave functions.
Unlike other pair population schemes, these calculations are
based in Moffitt’s theorem,23 which allows the decomposition
of MO Slater determinants24 in local ones in both orthogonal25,26

and nonorthogonal basis sets,27 as well as the second quantized
formulation28 of generalized density matrices.29 The use of
Moffitt’s decompositions can lead to a polyelectron population
analysis30 referring to both electrons and electron holes,31 and
allows the examination of the behavior of covalent and ionic
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resonance structures of bonds or, in general, the investigation
of the probabilities of finding various types of electronic
events.31-33 In the present work, analyzing coulomb and
exchange correlations we adopt implicitly two general assump-
tions, which, however, are also used in a direct or indirect way
very frequently. (i) An atom is considered in Hilbert space and
is assumed to be composed of nuclei-centered orbitals (with
different populations from one molecule to another). To
distinguish this point of view from the physical concept of an
atom inside of a given molecular system, in this work we use
the term “center” instead of “atom”. (ii) All pairs of centers
(i.e., atoms) are considered to be bonded (more precisely, to
interact) at least very weakly. This manner of visualizing
chemical bonding is used in the investigation of various types
of bond orders within one-electron population analysis and is
closely related to usual valence bond (VB)34 pictures of
resonance structures, or to the NBO-based structures of natural
resonance theory (NRT).35,36

2. Electron Pair Distributions as Two-Electron Events in
the Framework of Moffitt’s Theorem

According to Moffitt’s theorem,23,25 each (delocalized) MO
Slater determinant of a MO wave function,Ψ(MO), is decom-
posed into the complete (local) determinantal basis set{K}. Each
K is a totally local (TL) Slater determinant involving the AOs,
which are used in the MOs. The obtained wave function has
the form

The expansion coefficients,TK, are obtained from expressions
involving LCAO and CI coefficients;23,25these expressions are
the same for both orthogonal and nonorthogonal AOs. The
calculation ofΨ(TL) involves no approximations or additional
assumptions, and the only approximations involved in eq 1 are
those that are included in the initial wave functionΨ(MO); thus
Moffitt’s theorem guarantees the validity of the following
relation:

In the framework of orthogonal orbitals, the expectation
values of density operators aµ

+aλh
+aλhaµ and aµ

+aλ
+aλaµ are the

following:

where∑K
(µ,λh) is a summation over those Slater determinants in

which the spin-AO µ is present conjointly withλh; WK is the
weight of Slater determinants, K, which, in the case of
orthogonal orbitals, is equal toTK

2. The expectation value
calculated in eq 3a provides theprobability of finding simul-
taneously two electrons. of antiparallel spin in AOsµ and λ,
while the remaining electrons can reside anywhere else. (No
labels (1,2) are given for these two electrons; this means that
we considerany of the available (R,â) pairs). Similar is the
meaning of expectation value calculated in eq 3b, concerning
electrons of parallel spin. Apart from these probability meanings,
an alternative interpretation can be given, which refers to the

numberof electron pairs. Because the electron pair distributions
are normalized toN(N-1)/2 (whereN is the total number of
electrons andN ) NR + Nâ), P2(µ,λh) provides also the number
of R,â electron pairs belonging to AOsµ andλ; it is a fraction
of the number,NRNâ, of antiparallel spin electron pairs.
Similarly, P2(µ,λ) provides the number ofR,R electron pairs
belonging to the same AOs, and it is a fraction of the number,
NR(NR-1)/2, of electron pairs with parallel (R,R) spin. In the
above, we have adopted Lowdin’s normalization, i.e., the total
number of electron pairs is equal toN(N-1)/2.

By calculating electron pair distributions in the framework
of Moffitt’s theorem, one can easily rationalize the manner with
which the quantities of eqs 3a and 3b are calculated in
conjunction with their physical meaning. In a molecular system
of M (spatial) AOs, there are (M!/NR!(M - NR)!) (M!/Nâ!(M -
Nâ)!) distinct ways to arrange theNR and Nâ electrons in the
available AO positions. Each arrangement defines anN-electron
event, which is represented from one Slater determinant K, and
the whole molecular wave function (eq 1) is obtained from the
superposition of all possible K. In this context, a weight,WK,
is the probability of finding simultaneously theN electrons in
some (N in number) of the available AOs. Consequently, the
probability of atwo-electron eVent(as the simultaneous location
of two electrons in two AOs) is obtained from thesummation
of the probabilitiesof well selectedN electron events. The type
of K that must be selected is determined by the type of chosen
density operator: in eq 3a or eq3b, both the restriction in the
location of two electrons in two AOs and the fact that the
remaining electrons are allowed to reside anywhere else are
satisfied from the summation ofWK of all possibleN-electron
events, which have as common feature the two-electron event
in the target AOs.

When the AO basis set is non-orthogonal, the probabilistic
interpretation is not possible because the quantitiesP2(µ,λh) and
P2(µ, λ) are not expectation values of density operators, but
just occupation numbers. In this case, the weightsWK can be
calculated asTK

2 + ∑K′*K TKTK′ 〈K|K ′〉, and thus the sums of
the selected weights in equations 3a and 3b provide an
occupation number meaning,30 which is similar to that presented
above in the case of orthogonal orbitals. The only difference
between the two meanings is that in the nonorthogonal case,
one must adopt a Mulliken partition30,27 for the distribution of
electron pairs in the nonorthogonal orbitals, in a manner quite
similar to that frequently adopted for one-electron populations.

The Mulliken partition, even though it is quite convenient
for numerical applications, has some important defects appearing
primarily when very diffuse orbitals are used. To avoid these
difficulties, the one-electron population analysis in orbital space
is performed the most often with orthogonal natural orbitals
such as NAOs (or NBOs).1,2 The calculation of electron pair
distributions in such a natural basis set by means of Moffitt’s
theorem requires two more steps.25,26Here we summarize briefly
the process that is used. First, the NAOs corresponding to the
initially calculated (correlated) MO wave function,Ψ(MO), are
obtained by using the first-order density matrix. Then,Ψ(MO)
is rewritten in another MO wave function,Ψ′(MO), in which
the Slater determinants involve MOs that are a linear combina-
tion of NAOs. Because, by definition, NAOs span the complete
SCF-AO basis set, this transformation can be performed without
introducing approximations, and thusΨ′(MO) ) Ψ (MO).
Finally, Moffitt’s theorem is applied toΨ′(MO); this wave
function is decomposed into aΨ(TL) in which the Slater
determinants K involve NAOs. Then, the electron pair distribu-
tions are calculated as above. Equation 2 remains valid even in

|Ψ(TL)〉 ) ∑
K

TK |K〉 (1)

Ψ(MO) ) Ψ(TL) (2)

P2(µ, λh) ) 〈Ψ(TL)|aµ
+aλh

+aλhaµ|Ψ(TL)〉 ) ∑
K

(µ,λh)

WK (3a)

P2(µ, λ) ) 〈Ψ(TL)|aµ
+aλ

+aλaµ|Ψ(TL)〉 ) ∑
K

(µ,λ)

WK (3b)
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this case, because, due to Moffitt’s theorem, it follows that

3. Coulomb and Exchange Interactions in Two NAOs
from the Corresponding Correlations

Information for coulomb and exchange interactions, existing
inside of a given molecular system, can be obtained quantita-
tively by using the corresponding correlations in AO space. In
general, correlation of two events is the difference in the
probability with which these events occur simultaneously minus
the product of probabilities of the independent events. In this
context, coulomb correlations (i.e., those describing the interac-
tions of electrons of antiparallel spin),F(µ,λh), in a given pair
of NAOs µ and λ, can be estimated by calculating the
corresponding one- and two-electron distributions in the NAOs,
as this is presented in previous section:

wherenµ
R andnλ

â are the one-electron probabilities, or occupa-
tion numbers, in NAOsµ andλ.

Because usual chemical bonds are composed essentially of
(R,â) pairs, the physical meaning ofF(µ,λh) is quite important
because these quantities can provide direct information about
the interaction of antiparallel spin electrons inside a molecular
system. For these quantities, the following two interpretations
can be given.

(i) Probabilistic Interpretation. Becausenµ
Rnλ

â is the prob-
ability of finding simultaneously two electrons of antiparallel
spin in NAOsµ and λ when these electrons are independent,
coulomb correlation different from zero arises when the interac-
tion is nonnegligible and is taken into account. Negative
coulomb correlation means that the electrons inside the molecule
behave in such a way that their repulsion appears to be greater
than the repulsion of two independent charge densitiesnµ

R and
nλ

â. This type of interaction of electrons in NAOsµ andλ will
be referred to as “repulsive”. In the opposite case, when the
coulomb correlation is positive, the corresponding interaction
will be referred as “attractive”. By the term attractive we mean
that between electrons in NAOsµ and λ there arelesser
repulsions(as a direct consequence of the chemical bonding),
than the repulsions which we expected between charge densities
nµ

R andnλ
â.

(ii) Occupation Number Interpretation. Within the oc-
cupation number interpretation,nµ

R and nλ
â are one-electron

populations, and thus the quantitynµ
Rnλ

â provides the number of
electron pairs that can be formed between electrons occupying
NAO µ with those of NAOλ; this number of electron pairs
corresponds to the “statistical limit”, which defines a reference
state characterized from the absence of two-electron correlations.
Because the real number of electron pairs formed inside the
molecule isP2(µ,λh), negative (or positive) values forF(µ,λh),
which are issued when interactions of antiparallel spin electrons
are nonnegligible, mean that the number of electron pairs
obtained from the coupling of electrons in NAOsµ and λ is
smaller (or greater) than that corresponding to the statistical
limit.

Similarly, the exchange (or Fermi) correlations (i.e., those
describing the interactions of electrons of parallel spin),F(µ,λ),
in the same pair of NAOsµ andλ are

These quantities are, in general, nonzero at the Hartree-Fock
(HF) level, and their physical meaning is well known and
discussed in various contexts, providing new insights into
chemical bonding.6-9,11,12,15,17-20 Also, bond orders directly
proportional to exchange correlations are used;7-9 these quanti-
ties, as well as the effective pair populations,10 are in fact
equivalent to Wiberg13 indices.

It is worth noticing that the statistical numbers (or prob-
abilities) nµ

Rnλ
â and nµ

Rnλ
R are fractions of the global statistical

number,nµnλ

which gives the total number of electron pairs (or total
probability) belonging to the pair of NAOsµ andλ, if any type
of two-electron correlations (i.e., coulomb or exchange) were
absent.

4. Distributions of Coulomb and Exchange Correlations
in the Whole Molecule

In a molecular system havingM AOs, one can consider 1/2
M(M + 1) (in number) pairs of AOs (including the one-AO
pairs). TheN electrons of a molecular system can formNπ )
N(N - 1)/2 (in number) electron pairs, distributed in the
available pairs of AO positions; both the antiparallel (NR Nâ in
number) and parallel (1/2NR (NR - 1) and 1/2Nâ (Nâ - 1))
spin electron pairs (whereNπ ) NR Nâ + 1/2 NR (NR - 1) +
1/2 Nâ (Nâ - 1)) are distributed in the same pairs of AO
positions. The comparison of the distributions of electron pairs
(or probabilities), given by eqs 3a and 3b, with the pairs formed
from the one-electron densities in the framework of the statistical
limit, can provide useful information about the two-electron
interactions and their distributions inside of the given molecular
system. This will be done in this section by using the coulomb
and exchange correlations in NAOs, presented in section 3, and
examining their distributions in the available pairs of NAOs
(including the one-NAO terms).

Let us consider the pairs that are formed from a given NAO
µ with all NAOs of the system. The coulomb and exchange
correlations in these pairs satisfy the following eqs 8a and 8b:

The above equations can be derived from analogous well-known
expressions4 (involving the so-called “correlation terms” and
conditional probabilities) by replacing the integrations over
electron coordinates by summations over all orbitals as NAOs,
which span the complete space of the SCF AO basis set.
Alternatively, eqs 8a and 8b can be derived in the framework
of second quantized formalism by using basic anticommutation
properties of creation and annihilation operators. Developing
the summations of expectation values of second-order density
operators,

and

Ψ(TL) ) Ψ′(MO) (4)

F(µ,λh) ) P2(µ,λh) - nµ
Rnλ

â (5)

F(µ,λ) ) P2(µ,λ) - nµ
Rnλ

R (6)

nµnλ ) nµ
Rnλ

â + nµ
ânλ

R + nµ
Rnλ

R + nµ
ânλ

â (7)

∑
λh

F(µ, λh) ) 0 (8a)

∑
λ

F(µ, λ) ) -nµ
R (8b)

∑
λh

〈Ψ(TL)|aµ
+aλh

+ aλhaµ|Ψ(TL)〉 )

〈Ψ(TL) aµ
+aµ ∑

λh

aλh
+ aλh|Ψ(TL)〉
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and by using relations of the type∑µ aµ
+aµ|Ψ(TL)〉 ) nµ

R|Ψ(TL)〉
or (aµ

+aµ)2 ) aµ
+aµ (idempotent operator), one can obtain

straightforwardly eqs 8a and 8b. This second quantized way
shows the complete consistency of expressions (8a) and (8b)
with (3a) and (3b), respectively.

Equation 8b is a direct consequence of the Pauli principle
and is the basis for the investigations of Fermi holes, or, in
general, the behavior of parallel spin electrons. It is also used
to obtain information aboutR,â pairing, despite the fact that it
concerns parallel spins. Even though eq 8a is not sufficiently
explored, we believe that this relation should be also of great
importance because it concerns directly (R,â) electron pairs,
which, in fundamental chemical intuition, are essential for
chemical bonding. By considering all pairs of NAOs in the
system, we obtain

It is worth noticing that the sums of coulomb correlations, eq
8a or eq 9a, are zero not because each element of these
summations is zero, as this is usually assumed in the two-
electron investigations (by adopting the HF level), but because
chemical bonding implies the coexistence of negative and
positive coulomb correlations. Equation 9a, for example, states
that in any molecular system one must have necessarily repulsive
and attractiveR,â interactions, which are distributed in such a
manner that the former are balanced by the latter.

As in a usual one-electron population analysis, a center V
(e.g., an atomic center) is defined from all orbitals belonging
to this center. For a systematic investigation of the distribution
of electron pairs in a molecule and their role in chemical
bonding, one must consider a partition of the total correlation
into one- and two- center terms; each of those is further
partitioned into terms referring to coulomb and exchange
correlations. Apart from the Lowdin’s normalization, which is
adopted in the present work, one could use also the McWeeny’s
normalization; both are totally equivalent, differing only by a
factor 2. McWeeny’s normalization is more intuitive for one-
center terms, whereas Lowdin’s is more intuitive for two-center
terms. We adopted the latter because in the present work we
examine chemical bonding, which is essentially derived from
the two-center terms.

The total number of pairsΠ(V) belonging to center V can
be partitioned into pairs of antiparallel spin electrons (involving
both one-NAO and two-NAO pairs) and parallel spin electrons
(involving only two-NAO pairs, because the one-NAO terms
are zero):

and similar definition forΠ(Vââ). Hereµ,µ′ are NAOs belonging

to center V.Π(V) is a fraction of Nπ, whereasΠ(VRâ) and
Π(VRR) are fractions ofNRNâ andNR(NR - 1)/2, respectively.
In the framework of the probabilistic interpretation,Π(V)
provides the probability of finding simultaneously two electrons
(regardless to their spin) on a center V, whereasΠ(VRâ) and
Π(VRR) are the probabilities of finding simultaneously on the
same center two electrons of antiparallel and parallel spin,
respectively.

Similarly, the total number of electron pairs,Π(V,W),
belonging to two centers V and W is partitioned into pairs of
antiparallel and parallel spin:

and similar definitions forΠ(Vâ WR) and Π(Vâ Wâ). An
analogous probabilistic interpretation can be given also for the
above quantities.

The differences of the above probabilities (or numbers of
electron pairs) of finding simultaneously two electrons minus
the simple products of one-electron probabilities define the
correlations of two electrons on center a V or between two
centers V and W. By using the concept of fluctuations of the
number of particles contained in a limited region of space,37

one can obtain the fluctuations of electronic populations on a
center V as the differences of the (real) number of electron pairs
belonging to this center minus the corresponding statistical limit
number. Correlations and fluctuations on a center V coincide
numerically when they refer to electrons of antiparallel spin;
however, they are different when they refer to parallel spin
electrons on one center, because in this case the statistical
number of electron pairs of the same type is different from the
corresponding total probability of noncorrelated particles.

(i) One-Center Correlations and Fluctuations.The interac-
tion of two electrons of antiparallel spin, both occupying center
V, is measured from coulomb correlation,F(VRâ). This term
involves the correlations,F(µ,µ′), concerning the interactions
arising from all possible combinations between electrons in
NAOsµ andµ′ (both belonging to center V), including the one-
NAO interactions. The coulomb part of fluctuations of the
electronic population on center V,Λ(VRâ), is obtained by means
of eq 11 and the corresponding statistical number of electron
pairs;Λ(VRâ) coincides with the correlationF(VRâ):

Similarly, the exchange correlations issued from interactions
of electrons of parallel (R-R) spin on center V,F(VRR), and the
corresponding exchange part of fluctuations (obtained by using
eq 11),Λ(VRR), are given from eqs 17 and 18, respectively:

∑
λ*µ

〈Ψ(TL)|aµ
+aλ

+ aλaµ|Ψ(TL)〉 )

〈Ψ(TL)|aµ
+aµ (∑

λ

aλ
+aλ - aµ

+aµ)|Ψ(TL)〉

∑
µ

∑
λh

F(µ,λh) ) 0 (9a)

∑
µ

∑
λ

F(µ, λ) ) -NR (9b)

Π(V) ) Π(VRâ) + Π(VRR) + Π(Vââ) (10)

Π(VRâ) ) ∑
µ

V ∑
µ′

VP2 (µ, µ′) (11)

Π(VRR) ) ∑
µ

V ∑
<µ′

VP2 (µ,µ′) (12)

Π(V,W) ) Π(VR Wâ) + Π(Vâ WR) + Π(VR WR) +
Π(Vâ Wâ) (13)

Π(VR Wâ) ) ∑
µ

V ∑
λh

WP2 (µ, λh) (14)

Π(VR WR) ) ∑
µ

V ∑
λ

WP2 (µ,λ) (15)

F(VRâ) ) Λ(VRâ) ) ∑
µ

V ∑
µ′

V[P2 (µ, µ′) - nµ
Rnµ′

â ] (16)

F(VRR) ) 1/2∑
µ

V ∑
µ′

V [P2(µ,µ′) - nµ
Rnµ′

R ] (17)

Λ(VRR) ) 1/2 [∑
µ

V ∑
µ′

V P2(µ,µ′) -

{∑
µ

V ∑
µ′

V nµ
Rnµ′

R - ∑
µ

V nµ
R}] (18)
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and similar expressions forâ-â spins. The term in braces is the
statistical number ofR-R electron pairs that are formed from
the one-electron populationNV

R (NV
R ) ∑µ

V nµ
R) on center V

(taking into account the possibility of self-pairing of particles
of the same type). In eqs 17 and 18, the factor 1/2 is due to the
fact that the Lowdin’s normalization is adopted (note also that
P2 (µ, µ) ) 0).

(ii) Two-Center Correlations. The interaction of two
electrons of antiparallel spin, one occupying center V and the
other W, is measured from the coulomb correlation,F(VR Wâ).
This term involves the correlations,F(µ,λh), for the interactions
arising from all possible combinations between electrons
occupying NAOs (µ) of center V and those occupying NAOs
(λ) of center W.

Similarly, the correlation,F(VR WR), concerning electrons of
the same spin on two centers are:

and similar expression forâ-â spins.
The above presented grouping of coulomb correlations

according to centers is consistent with eq 9a (by using definition
(5)), because they satisfy eq 21:

This is the basic relation providing the distributions of coulomb
correlations on one- and two-center component terms; it can
be used to investigate the coulomb interactions (repulsive or
attractive) and their distributions in the whole molecule.

Similarly, exchange correlations satisfy, as expected, eq 22:

Because in the present work we are principally interested on
two-center terms (responsible for chemical bonding), we do not
give emphasis to fluctuations of the electronic populations,
which concern essentially one-center terms. However, two-
center fluctuations,Λ(VR Wâ) andΛ(VR WR), could be defined
also and calculated by considering the numbers of electron pairs
(real and statistical) that are formed between two centers V and
W. In this context, hold the equalities F(VR Wâ) ) Λ(VR Wâ)
and F(VR WR) ) Λ(VR WR), and by using further expressions
16-20, one can derive that the total fluctuations issued from
antiparallel spin electrons, as well as those issued from parallel
spins, are equal to zero, in complete consistency with the above-
defined quantities.

5. Example: Bonding in cis-Butadiene
In this section we present a numerical example concerning

the chemical bonding inπ-system of thecis-butadiene molecule
to illustrate the physical meaning of the analysis presented in
previous sections, and to show the relative role of coulomb and
exchange correlations. In section 5.1, we explain the manner
in which coulomb correlations are distributed and their role in
chemical bonding; in section 5.2 we present the exchange
correlations and their comparison with the coulomb correlations;

in section 5.3 we explore bond orders defined from the sum of
coulomb and exchange correlations; finally, in section 5.4 we
investigate the role of CI and valence NAOs in two-electron
properties.

The initial MO wave functions, which are treated within
Moffitt’s theorem, are obtained by means of two separate series
of calculations. (a) Ab initio SCF+ CI. For these calclulations,
we adopted the chain of computer programs involving the
PSHONDO algorithm38 and the adapted multireference CI
(CIPSI) process.39 The basis set is a standard double-ú with
pseudopotentials implemented in these programs, increased by
one d symmetry (five AOs per atom) orbital having exponent
0.5. To investigate the behavior ofπ-electrons, various types
of density operators in the general form of eqs 3a and 3b are
used. These operators involve all pairs of NAOs belonging to
the π-system (e.g., valence-valence, valence-Rydberg, etc.),
which are necessary for one- and two-center terms. (b) Parr-
Pariser-Pople (PPP)+full CI. For the SCF part of these
calculations, we adopted the parametrization of Soos and co-
workers.40 In this case, the density operators are obtained by
using the model orthogonal AOs,41 which are used in PPP as
well as Hubbard methods (only one AO ofπ-symmetry per
center). In each of the above series of calculations, we have
considered and treated both the uncorrelated (HF) and correlated
wave functions. The geometry used is standard: C-C bond
lengths for the single and double bonds are 1.35Å and 1.45Å,
respectively, and the bond angles are 120°.

The π-system of butadiene involves fourπ-centers (one for
each carbon atom), and each of them is composed of 4 NAOs:
one is the high occupancy valencePz-NAO, whereas the other
three are the low occupancy NAOs, which are issued from the
double-ú + polarization part of the SCF-AO basis set. To
calculate the one- and two-center probabilities and the corre-
sponding correlations, we have considered all of the possible
combinations between electrons belonging to these NAOs (see
section 4).

In Table 1 we present analytically the numbers of electron
pairs and correlations in valencePz-NAOs and the sums
referring to all orbitals of theπ-system belonging to one center
V; Table 2 involves the analogous quantities corresponding to
two-centers V and W; in Table 3 we regroup the parts of
correlations and fluctuations belonging to each center, V. In
the CI level of ab initio calculations, the number ofπ-electrons
is slightly greater than 4 (4.0065). This is due to the fact that in
this level there is a small electron transfer from theσ system to
the π system. For simplicity in the presentation of the results,
and coherency with the HF and PPP+full CI calculations, in
this work we present only the results concerning the interactions
inside theπ-system (and not those ofσ-π interactions), even
though the calculations of electron pair distributions are
performed by considering the wholeσ + π system. In HF ab
initio and PPP (both HF and full CI) levels, the total coulomb
and exchange correlations, as expected, are 0.0 and-2.0,
respectively; in the ab initio-CI level the small delocalization
of the σ system to theπ system has the consequence that the
total coulomb correlation is 0.001 and the exchange correlation
is -1.9915. The one-electron populations for centers 1 and 2
are found to be 1.0038 (0.9997) and 0.9995 (1.0003) in ab initio
CI (the parenthesis correspond to the HF level), and 1.0243
(1.0306) and 0.9757 (0.9694) in PPP+full CI (HF level) wave
functions.

5.1. Coulomb Interactions and Their Role in Chemical
Bonding. Let us consider the sum, C1 , of one-center coulomb

F(VR Wâ) ) ∑
µ

V ∑
λh

W [P2(µ,λh) - nµ
Rnλ

â] (19)

F(VR WR) ) ∑
µ

V ∑
λ

W [P2(µ,λ) - nµ
Rnλ

R] (20)

∑
V

F(VRâ) + ∑∑
V<W

[F(VR Wâ) + F(Vâ WR)] ) 0 (21)

∑
V

F(VRR) + ∑∑
V<W

F(VR WR) ) -NR/2 (22)
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correlations (see Tables 1 and 3)

and the sum, C2, of two-center coulomb correlations for all pairs

V and W (see Table 2)

According to eq 21, the sum of C1 and C2 is equal to zero for

TABLE 1: One-Center Two-Electron Probabilities (or numbers of electron pairs) and Correlations for Antiparallel (coulomb)
and Parallel (exchange) Spin Electronsa

coulomb exchange

probabilities
(or numbers of pairs) correlations

probabilities
(or numbers of pairs) correlations

center
V

level
of calc

valence
P2(Pz,Phz)

all π orbitals
of center V:

Π(Vaâ)
valence
F(Pz, Phz)

all π orbitals
of center V:

F(Vaâ)
valence

P2(Pz, Pz)

all π orbitals
of center V:

Π(Vaa)
valence

1/2F(Pz, Pz)

all π orbitals
of center V:

F(Vaa)

I - CI 0.1848 0.1901 -0.0622 -0.0618 0.0 0.0006 -0.1235 -0.1253
1 I - HF 0.2473 0.2498 0.0 0.0 0.0 0.0001 -0.1237 -0.1248
(or 4) II - CI 0.1771 -0.0852 0.0 -0.1311

II - HF 0.2655 0.0 0.0 -0.1328
I - CI 0.1913 0.1963 -0.0534 -0.0535 0.0 0.0010 -0.1224 -0.1239

2 I - HF 0.2472 0.2502 0.0 0.0 0.0 0.0005 -0.1236 -0.1246
(or 3) II - CI 0.1678 -0.0702 0.0 -0.1190

II - HF 0.2349 0.0 0.0 -0.1175

a The level of calculations concerns the initially considered wave function: I is ab initio (in HF and CI levels); II is PPP (in HF and full CI).

TABLE 2: Two-Center Two-Electron Probabilities (or numbers of electron pairs) and Correlations for Antiparallel (coulomb)
and Parallel (exchange) Spin Electronsa

coulomb exchange

probabilities
(or numbers of pairs) correlations

probabilities
(or numbers of pairs) correlations

centers
V - W

calc
level

valence
P2[(Pz)V,(Phz)W]

all π orbitals
of centers V,W:

Π(VaWâ)
valence

F[(Pz)V,(Phz)W]

all π orbitals
of centers V,W:

F(VaWâ)
valence

P2[(Pz)V,(Pz)W]

all π orbitals
of centers V,W:

Π(VaWa)
valence

F[(Pz)V,(Pz)W]

all π orbitals
of centers V,W:

F(VaWa)

I - CI 0.3024 0.3072 0.0565 0.0563 0.0241 0.0259 -0.2218 -0.2250
1-2 I - HF 0.2473 0.2500 0.0 0.0 0.0214 0.0219 -0.2259 -0.2281
(or 3-4) II - CI 0.3251 0.0752 0.0196 -0.2303

II - HF 0.2498 0.0 0.0187 -0.2310
I - CI 0.2470 0.2519 0.0023 0.0021 0.2139 0.2180 -0.0308 -0.0317

2-3 I - HF 0.2472 0.2502 0.0 0.0 0.2254 0.2279 -0.0218 -0.0223
II - CI 0.2406 0.0026 0.2032 -0.0348
II - HF 0.2349 0.0 0.2162 -0.0187
I - CI 0.2410 0.2461 -0.0049 -0.0047 0.2541 0.2582 0.0082 0.0074

1-3 I - HF 0.2473 0.2500 0.0 0.0 0.2473 0.2494 0.0000 -0.0006
(or 2-4) II - CI 0.2422 -0.0077 0.2651 0.0153

II - HF 0.2498 0.0 0.2497 0.0000
I - CI 0.2576 0.2623 0.0105 0.0104 0.2173 0.2213 -0.0297 -0.0306

1-4 I - HF 0.2473 0.2498 0.0 0.0 0.2264 0.2283 -0.0210 -0.0215
II - CI 0.2800 0.0177 0.2275 -0.0348
II - HF 0.2655 0.0 0.2468 -0.0187

a The level of calculations concerns the initially considered wave function: I is ab initio (in HF and CI); II is PPP (in HF and full CI).

TABLE 3: One-Center Coulomb, F(Vrâ), and Exchange,F(Vrr) + F(Vââ), Correlations and the Corresponding Fluctuations of
Coulomb, Λ(Vrâ) (where F(Vrâ) ) Λ(Vrâ)), and Exchange,Λ(Vrr) + Λ(Vââ), Partsa

correlations fluctuations

parts parts

centerV calc level coulomb exchange total coulomb exchange total

I - CI -0.0618 -0.2507 -0.3124 -0.0618 0.2512 0.1895
1 I - HF 0.0 -0.2496 -0.2496 0.0 0.2502 0.2502
(or 4) II - CI -0.0852 -0.2623 -0.3475 -0.0852 0.2499 0.1646

II - HF 0.0 -0.2655 -0.2655 0.0 0.2498 0.2498
I - CI -0.0535 -0.2477 -0.3012 -0.0535 0.2520 0.1985

2 I - HF 0.0 -0.2491 -0.2491 0.0 0.2510 0.2510
(or 3) II - CI -0.0702 -0.2380 -0.3082 -0.0702 0.2499 0.1797

II - HF 0.0 -0.2349 -0.2349 0.0 0.2498 0.2498
SUM I - CI -0.2305 -0.9968 -1.2272 -0.2305 1.0065 0.7760
FOR ALL I - HF 0.0 -0.9975 -0.9975 0.0 1.0025 1.0025
CENTERS II- CI -0.3107 -1.0006 -1.3113 -0.3107 0.9994 0.6887

II - HF 0.0 -1.0009 -1.0009 0.0 0.9991 0.9991

a The sum for all centers, in the case of correlations, provides quantity C1 of equation 23. The level of calculations concerns the initially considered
wave function: I is ab initio (in HF and CI levels); II is PPP (in HF and full CI).

C1 ) ∑
V

F(VRâ) (23) C2 ) ∑∑
V<W

[F(VR Wâ) + F(Vâ WR)] (24)
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any molecular system:

The quantity C1 (given in Table 3) is negative, because each
term,F(VRâ), of the sum (eq 23) is negative. This means that
the interactions of two electrons of antiparallel spin belonging
to one center are repulsive, and can be easily rationalized from
the fact that the two electrons are restricted to being located in
the same (limited) space of one center. One must note that this
holds not only for the expected case of a valence orbital but
also for the summation of all possible interactions in all orbitals
of one center, including the diffuse orbitals (see Table 1). On
the contrary, examining the component terms of quantity C2

(see Table 2) we are led to distinguish two kinds of interactions,
depending on the pairs of AO-positions, that are considered the
attractive and the repulsive interactions. Let C2

+ be the sum of
the former and C2- the sum of the latter:

By using eqs 25 and 26, and taking into account that C1 is a
negative quantity, one can conclude (i) that the two-center
coulomb interactions are globally attractive, that is the repulsive
interactions are less important than the attractive ones:

and (ii) that the extent by which the attractive interactions
overcome the repulsive ones is determined by the magnitude
of one-center interactions: larger is the absolute value of C1,
more important are the attractive two-center interactions with
respect to the repulsive interactions. These conclusions are quite
general and must hold for a large range of usual molecular
systems, because they are based only on the assumption that
the one-center interactions are globally repulsive (which must
hold in most of the usual systems). In Figure 2 we give a
schematic representation of one-center (repulsive) and two-
center (globally attractive) interactions, and the spitting of the
latter in two components (attractive and repulsive). In the case
of butadiene, C2+ and C2

- are found to have the following values

in ab initio-CI/PPP+full CI levels: C2
+ ) 0.2502/0.3416 and

C2
- ) -0.0188 /-0.0308.
The analysis of the distribution of C2+ and C2

- in various
NAOs reveals in which pairs of centers the interactions are
attractive or repulsive. In the case of butadiene, one can find
(see Table 2) four attractive and two repulsive interactions: the
former concern centers (1,2), (2,3), (3,4), and (1,4), whereas
the latter concerns centers (1,3) and (2,4). These results are
completely consistent with usual pictures for chemical bonding,
involving R,â pairs which are disposed into alternatingR,â
schemes.

According to VB theory, the bonding of butadiene is
described from the resonance of the first two structures (IT
II) of Figure 1. Mesomer (or resonance) structure III is
forbidden, because the corresponding VB spin eigenfunction
describing this structure is linearly dependent on those of
structures I and II. This VB description is in agreement with
the finding of repulsive coulomb interactions for centers (1,3)
or (2,4), which are included in structure III, and attractive
interactions for (1,4), which are included in structure II. On the
contrary, if we were limited to one-electron population analysis,
the positive bond order in (1,3) and the negative one in (1,4)
should lead to the conclusion that there is a bonding character
between 1 and 3 and an antibonding character between 1 and 4
(for more details see section 5.3).

For a given pair of centers (V,W) the quantityRC(V,W) )
[F(VR Wâ) + F(Vâ WR)]100/C2

+ provides the percentage of
the attractive coulomb interactions that belongs to the pair
(V,W). In the framework of Mesomeric or Resonance theory
(see also refs 35, 36), the electron pairs of butadiene can be
arranged into pairs of centers according to bonding schemes of
either mesomer structures I or II of Figure 1. Because structure
I is composed of bonding schemes between pairs (1,2) and (3,4),
one can conclude that the quantity WC (I) ) RC(1,2)+ RC(3,4)
provides the total amount of the attractive coulomb interactions
belonging to this structure. Similarly, the quantity WC(II) )
RC(2,3)+ RC(1,4) provides the analogous amount corresponding
to mesomer structure II. These quantities are found to have the
following values: WC(I)/WC(II) ) 89.98%/10.02% from the
ab initio CI wave function, and WC(I)/WC(II) ) 88.12%/11.88%
from the PPP+ full CI wave function.

Coulomb Holes In NAOs.In general, in an electronic
assembly (not necessarily forming bonds), a coulomb hole
measures the extent to which an electron in a target position V
(frequently called reference electron or reference position)
excludes (within a negative value of the hole) an electron of
opposite spin in various positions X. The ratioΠ(XâVR)/NV

R is
a conditional probability describing the probability of finding
an electron ofâ spin on center X, under the condition that an
electron of R spin is located on center V. Following the
definition of coulomb hole in coordinate space,4 one can
introduce the quantityhC(Xâ/VR),

which defines the coulomb hole on various centers X with
respect the reference electron located on a center V (where both
X and V are assumed to be composed of NAOs). In this context,
a coulomb hole indicates how the conditional one-electron
density on X deviates from the usual one-electron density (i.e.,
the unconditional probability) on the same center. By using
expressions from section 4, one can show that the above-defined
holes on centers have the following property, in good agreement

Figure 1. Numbering for butadiene molecule and various bonding
schemes involved in mesomer (or resonance) structures I, II, and III.

Figure 2. Schematic representation of the interaction of antiparallel
spin electrons in a molecular system. The two-center, C2, globally
attractive interactions (responsible for chemical bonding) are balanced
by the one-center, C1, repulsive ones so that their sum is equal to zero.
C2 is issued from the sum of attractive, C2

+, and repulsive, C2-, two-
center interactions.

C1 + C2 ) 0 (25)

C2 ) C2
+ + C2

- (26)

C2
+ > |C2

-|

hC(Xâ/VR) ) Π(XâVR)/NV
R - NX

â
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with an analogous property in coordinate space:4

Coulomb holes,hC(Xâ/1R), on the fourπ centers of butadiene
(X ) 1...4) with respect to an electron on the first center (V)
1) are found to have the following values in ab initio/PPP (both
in CI) levels: -0.1231/-0.1664, 0.1123/0.1469,-0.0095/-
0.0150, and 0.0208/0.0345. For X) V, the negative value of
hC(1â/1R) is a consequence of the usual one-center self-repulsion
of two electrons (see coulomb correlations); for X* V, coulomb
holes are also of a great importance for chemical bonding: the
negative value for X) 3 and the positive values for X) 2 or
X ) 4 mean that the presence of anR spin on center V) 1
excludes the presence of opposite spin in X) 3, and at the
same time favors the presence of opposite spins on centers X
) 2 or X ) 4. The absolute values of these holes give a measure
of the extent of (unfavorable) exclusion or (favorable) simul-
taneous presence of the opposite spin electron. Both quantitative
and qualitative pictures are in complete agreement with funda-
mental chemical intuition: for example, comparing the mag-
nitudes of the above holes, one can conclude that the presence
of an R-spin electron in V) 1 favors more the presence of a
â-spin in X ) 2 than in X) 4.

Grouping Centers into Bonds.The equations in section 4
show how two-electron populations and correlations in NAOs
can be grouped according to centers. Let us consider now that
centers V and W are further grouped into bonds,Ω. By using
equations that are isomorphic to those of section 4, one can
obtain the intrabond correlation of antiparallel spin electrons,
F(ΩRâ), which are equal to the coulomb part of electronic
fluctuation,Λ(ΩRâ)

where bondΩ is assumed to be composed of two centers V
and W.

In mesomer structure I of butadiene (Figure 1) the first bond
is composed of centers 1 and 2; the intrabond correlation is
found from both ab initio and PPP (both in CI) levels to be
quite small:-0.0026 and-0.0049, respectively. Because this
quantity is negative, the interbond correlation

is necessarily positive, so that the global correlation of the
system is equal to zero. (In butadiene, this summation involves
only one interbond term.)

In mesomer structure II, one bond,Ω1, is composed of centers
1 and 4, and the other,Ω2, from 2 and 3. The intrabond
correlations in ab initio/PPP (both in CI) calculations are found
to be -0.1027/-0.1351 for bondΩ1, and -0.1028/-0.1351
for Ω2. Consequently, the (totally negative) coulomb correlations
in bonds of mesomer structure II are much larger than those of
structure I. These results will be used below in conjunction with
the exchange part of fluctuations in order to obtain information
about the degree of (de)localization of chemical bonds in
mesomer structures I and II.

5.2. Exchange Interactions and their Comparison with
Coulomb Interactions. Due to the Pauli principle, the correla-
tion of two electrons of parallel spin in one orbital, as the valence

PZ-NAO, is strongly negative. The same holds also for the entire
one-center exchange interactions involved inF(VRR), even
though this term includes correlations on two different orbitals
(on the same center). On the contrary, the two-center correlations
can be both positive or negative. The signs of exchange
correlations areoppositeto those of coulomb correlations: they
are negative for pairs of centers (1,2), (2,3), (3,4), and (1,4)
and positive for (1,3) and (2,4). Consequently, in regions (i.e.,
in pairs of centers as (1,2)...(1,4)) where antiparallel spin
electrons are attractive, the parallel spin electrons are repulsive;
the exact opposite holds for other regions (such as (1,3) and
(2,4)). In this context, exchange interactions arecomplementary
to coulomb interactions and confirm the conclusions that are
obtained in section 5.1. The general trends are that attractive
coulomb as well as repulsive exchange interactions specify
regions considered to have bonding character, whereas opposite
interactions hold for regions of antibonding character. One must
note also that coulomb or exchange correlations considered
separately lead to the same pictures for chemical bonding.

An important difference between the two correlations is that
the absolute values of exchange are larger (about 2-4 times)
than the coulomb values. Therefore, it is interesting to compare
quantitatively the overall picture for chemical bonding, which
is obtained in the framework of investigation of exchange
correlations, with the picture obtained previously from the
coulomb correlations. For this purpose, for a given pair of
centers (V,W), one can consider the ratioRE(V,W) ) [F(VRWR)
+ F(VâWâ)]100/E2

- (whereE2
- is the sum the negative two-

center exchange correlations), which provides the percentage
of the repulsive exchange interactions belonging to the pair
(V,W). Therefore, the quantities WE(I) ) RE(1,2) + RE(3,4)
and WE(II) ) RE(2,3) + RE(1,4), provide the total amount of
repulsive exchange interactions belonging in mesomer structures
I and II, respectively. These quantities can be calculated in both
HF and CI levels, and are found to be WE(I)/WE(II) ) 87.84%/
12.16% (91.24%/8.76%) from ab initio-CI wave function, and
WE(I)/WE(II) ) 86.86%/13.14% (92.52%/7.48%) from the PPP
+ full CI wave function (the value in parentheses corresponds
to the HF level).

One must note that the results obtained from the HF and CI
levels are quite comparable; this is due essentially to the fact
that parallel spin electrons (as a result of the Pauli principle)
are partially correlated in the single Slater determinant of the
HF level. Quantities WE(I) and WE(II) are of the same magnitude
with WC(I) and WC(II) (calculated from coulomb correlations
in section 5.1), respectively. Therefore, one can conclude that
the overall picture for chemical bonding obtained from the
investigation of coulomb or exchange interactions is quite
similar. This holds despite the fact that both of the signs and
magnitudes of coulomb and exchange correlations are quite
different.

The exchange part of fluctuations on one-center is given from
eq 18 (see also Table 3), and according to usual interpreta-
tions6-9,11,12,17,19,20it provides a measure of the degree of
delocalization. The coulomb part of one-center fluctuations is
the same as the one-center correlations. From the sum of the
two parts, which is presented in the last column of Table 3,
one can conclude that the degree of delocalization of electrons
from each center is important. From this table it follows that
the coulomb part contributes to lower the fluctuations, and thus
the delocalization (despite the fact the total delocalization
remains important). The nonnegligible differences between the
fluctuations in CI and HF levels are due essentially to the
coulomb part.

∑
X

hC(Xâ/VR) ) 0

F(ΩRâ) ) Λ(ΩRâ) ) F(VRâ) + F(WRâ) + F(VR Wâ) +
F(WR Vâ)

∑∑
Ω<Ω′

[F(ΩR Ω′â) + F(Ω′R Ωâ)]
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Fermi Holes in NAOs.As for coulomb holes, Fermi holes
are defined with respect to a reference electron (or position).
Following the definition of a Fermi hole in coordinate space,4

and by using the conditional probability,Π(XRVR)/NV
R, in

orbital space, one can define the Fermi hole,hF(XR/VR), on
various centers X with respect to the reference electron located
on center V

where centers are assumed to be composed of NAOs) and where
∑X hF(XR/VR) ) -1, in agreement with the equivalent relation
in coordinate space.4

Fermi hole measures the degree to which an electron in V
excludes (due to the Pauli principle) electrons of the same spin
in various positions of space (the sum for all positions is equal
to -1). If there was not chemical bonding, then Fermi hole
should be negative for all positions. Fermi holes,hF(XR/1R), on
the fourπ centers of butadiene (X) 1...4) with respect to an
electron on the first center (V) 1) are found to have the
following values in ab initio/PPP (both in CI) levels:-0.4995/
-0.5122, -0.4482/-0.4497, 0.0148/0.0299, and-0.0610/
-0.0681. These results mean that the presence of anR spin
electron in V) 1 excludes the presence of the same spin in X
) 2 and X) 4 (negative values), but not in X) 3 (positive
values); for X ) 3, the favorable presence of parallel spin
electrons (due to chemical bonding) overcomes the Pauli
exclusion.

The above results, concerning Fermi holes, are complemen-
tary to analogous results for antiparallel spins from coulomb
holes presented previously. Both are in agreement with usual
mesomer structures (as this holds also for coulomb and exchange
correlations) and chemical intuition, in which chemical bonding
is formed from alternatingR,â spins.

Grouping Centers into Bonds.By grouping centers into bonds,
Ω, as this is presented previously for coulomb interactions, one
can obtain the part of correlation (i.e., intrabond exchange
correlation),

and fluctuation,

corresponding to parallel spin electrons of a bondΩ.
Our calculations for a bond of mesomer structure I of

butadiene, in ab initio/PPP (both in CI) levels give-0.4741/
-0.4804 for correlations, and 0.0267/0.0196 for fluctuations.
For bondΩ1 of mesomer structure II we obtained-0.2812/
-0.2971 for correlations and 0.2206/0.2150 for fluctuations;
for bondΩ2 of the same structure, the correlations are found to
be -0.2794/-0.2728 and the fluctuations 0.2203/0.2150.

The fluctuation,Λ(Ω), of the electronic population in a bond,
Ω, provides a measure of the (de)localization of electrons in
this bond: closer to zero isΛ(Ω), more localized is this bond.
This quantity is obtained from the sum of the part of coulomb
fluctuations (which are equal to coulomb correlations presented
in section 5.1) and this of exchange ones:

In butadiene, for the bond of mesomer structure I the electron
population fluctuation is 0.0508/0.0342, whereas for bonds of

structure II it is found to be 0.3387/0.2950 forΩ1, and 0.3379/
0.2950 forΩ2. These results are in agreement with fundamental
chemical intuition, according to which of the two bonds in
mesomer structure II are more delocalized than those of structure
I. It is worth noticing also that the coulomb correlations (being
negative) contribute to lower the fluctuations of the electronic
population in these chemical bonds, and thus increase their
localization; this holds for bonds of both mesomer structure I
and II.

5.3. Bond Orders from the Sum of Exchange and
Coulomb Correlations. Exchange correlations are used to
define bond order indices7-9 at the HF level. In view of the
analysis presented in sections 5.1 and 5.2, the two-center
coulomb and exchange correlations, separately considered, could
be used as two different types of bond order indices (depending
on the spin of pairs). Alternatively, the correlation of electrons
regardless of their spincan be considered as another bond order
index. This type of correlation can be obtained as follows: The
number of electron pairs, regardless of their spin, that are formed
between two centers, is obtained from the sum of the corre-
sponding antiparallel and parallel spin pairs; this holds for both
the real number and the number of the statistical limit. In these
numbers of pairs, the electrons are considered as particles in
general without reference to their spin. For a given pair of
centers, V and W, the correlation of electrons, regardless of
their spin, is obtained from the comparison (i.e., the difference)
of the above real and the statistical limit numbers of electron
pairs; this correlation can be used to define a bond order index,
B(V,W), and is obtained from the sum of coulomb and exchange
correlations:

The negative sign is adopted to be consistent with the sign
convention of other indices7-9 based in exchange correlations
(in the framework of generalized Wiberg indices), as well as
the effective pair populations.10 IndicesB(V,W) are positive (in
the range from 0 to 0.5) when there is a bonding character
between centers V and W, and negative when there is an
antibonding character. These quantities can be reduced to the
well-known indices7-9 if multiplied by 2 and the coulomb
correlations are neglected; they differ from effective pair
populations10 by only the coulomb correlations. WithinB(V,W)
we examine the behavior of electron pairs without being able
to refer to their spins.

Table 4 presents the values ofB(V,W) for the π-centers of
cis-butadiene; from this table, apart from the strong bonding
character for (1,2) (or (3,4)) centers, one can conclude that
between centers (1,3) there is an antibonding character; this
holds in the CI level (in both ab initio and PPP), where coulomb
correlations are taken into account (but not in the HF level where

TABLE 4: Bond Orders, B(V,W), from the Spin-Free
Correlationa

centers V-W

calc
level

1-2
(or 3-4) 2-3

1-3
(or 2-4) 1-4

I - CI 0.3372 0.0592 -0.0054 0.0403
I - HF 0.4562 0.0446 0.0013 0.0431
II - CI 0.3101 0.0644 -0.0152 0.0343
II - HF 0.4625 0.0374 0.0000 0.0374

a The level of calculations concerns the initially considered wave
function: I is ab initio (in HF and CI levels); II is PPP (in HF and full
CI).

B(V,W) )
- (F(VRWR) + F(VâWâ) + F(VRWâ) + F(VâWR))

hF (XR/VR) ) Π(XRVR)/NV
R - NX

R

F(ΩRR) ) F(VRR) + F(WRR) + F(VR WR)

Λ(ΩRR) )
F(VRR) + F(WRR) + F(VR WR) + 1/2 (NV

R + NW
R )

Λ(Ω) ) Λ(ΩRâ) + Λ(ΩRR) + Λ(Ωââ)
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these quantities are neglected). Also, between centers (1,4) there
is a clear bonding character; this holds in all approximation
levels. These conclusions are in good agreement with the results
presented in previous sections, where coulomb and exchange
correlations are considered separately as two distinct (spin-
dependent) quantities.

In the framework of one-electron population analysis, the off-
diagonal elements of the first-order density matrix (from all
types of wave functions as the simple Hu¨ckel or ab initio-CI)
are negative for centers (1,4) (from the wave functions of the
present work are found from-0.2736 to-0.2360 depending
on the approximation level), whereas they are positive for (1,2)
(from 0.9613 to 0.8951) and (1,3) centers (from 0.010 to
0.0017). This suggests that the (1,4) bond has a character that
is necessarily the opposite of the bond (1,2), i.e., an antibonding
character; also, between centers 1 and 3 one should expect that
there is a (weak) bond. This point of view, arising from one-
electron analysis, does not agree with either of the usual pictures
provided by VB theory (see Figure 1) or with the presented
analysis. Furthermore, one must notice that in the framework
of usual thinking and reasoning of a chemist, one can evoke a
weak bond between (1,4) (which increases in the exited states),
even though a bond between (1,3) is usually excluded. This
shows the limits of some aspects of an analysis of chemical
bonding when this is restricted exclusively to one-electron
densities, when in fact a chemical bond is essentially a matter
of electron pairs. NRT, which arranges electron pairs in NBOs
in order to construct NBO-based resonance structures, also does
not find structure III. This theory instead of structure II, finds
a small weight for a resonance structure exhibiting a covalent
bond between (2,3) and an ionic (+,-) bond between (1,4).

5.4. The Role of CI and Valence NAOs in Two-Electron
Properties. The effects of CI are quite important for the
probabilities (or numbers of electron pairs) concerning antipar-
allel spins in two cases: (i) for one-center (or one-NAO) terms,
and (ii) for Vicinal two centers (or two NAOs) defining formal
bonds (as 1,2 or 3,4). In the first case, the CI diminishes the
two-electron probabilities, whereas in the latter CI increases the
corresponding probabilities. On the contrary, the probabilities
for parallel spin electrons are not so sensitive in CI; in both of
the above cited cases, the CI preserves the magnitudes of
probabilities that are found at the HF level. Regarding the sign
of the variations imposed by CI, it is theoppositefor antiparallel
and parallel spin electrons. Apart from the above two cases,
the effects of CI for electron pairs of antiparallel spin are smaller
(or negligible), for example, for vicinal centers not defining
formal bonds or for distant centers (or NAOs). The same holds
for parallel spins, and the trend of opposite sign in the variations
imposed by CI is also confirmed. These effects of CI are found
in NAOs or groups of NAOs or the model orthogonal orbitals
of PPP methods, and are in complete agreement with other
results of population analysis in nonorthogonal orbitals27 that
are found in other systems.

The role of CI in correlations is crucial for coulomb but not
for exchange correlations, especially for vicinal centers (or
NAOs) defining formal bonds, as shown in Table 2.

To examine the role of valence NAOs in two-electron effects,
one can examine the differences between the results obtained
by considering all orbitals belonging to each center with those
obtained in valence NAOs (see Tables 1 and 2). For example,
in one-center terms, the mean difference in correlations is only
∼0.6% for antiparallel and∼1.3% for parallel spin electrons;
the corresponding differences in two-center terms are∼0.6%
and∼ 4%, respectively. A more profound analysis of the results

presented in Tables 1 and 2 leads to the conclusion that all
effects in electron pair probabilities and correlations in both
one- or two-center terms are remarkably well described by
considering only the valence NAOs. This is essentially due to
the very definition of NAOs, which are “natural” in the Lowdin
sense. However, if we were limited to, for example, the inner
part of a well chosen double-ú SCF-AO basis set, then the results
would not be as good, because only valence NAOs involving
the optimum weights of the inner and outer SCF-AO functions
can represent satisfactorily the two-electron effects occurring
between valence orbitals.

The results obtained from PPP wave functions overestimate
the one-center correlations. This is due to the fact that in this
level of calculations only one orbital is available for each center
(in contrast to the valence+ Rydberg NAOs, which are involved
in each center in the ab initio level of calculations). Otherwise,
the results from PPP levels lead to the conclusion that both
coulomb and exchange correlations follow the principal trends
presented previously, and mainly the sign of correlations on
two centers, which control the chemical bonding. Another
general conclusion, that can be drawn (from Tables 1 and 2) is
that theσ-electrons are not important for two-electron effects
occurring in theπ-system, as for example the two-center
coulomb and exchange interactions. The magnitudes of cor-
relations obtained from PPP wave functions converge better to
the ab initio ones for exchange interactions rather than for
coulomb; this holds despite the fact that in ab initio CI
calculations there is an electron transfer from theσ to the π
system.

6. Conclusion

In this work the chemical bonding has been examined by
referring to the traditional thinking of a chemist that bonds are
mainly a matter of electron pairs. The calculation of electron
pair distributions, considered as two-electron events within
Moffitt’s theorem, leads to investigations of coulomb and
exchange correlations, which provide useful information about
the interactions of two electrons of antiparallel and parallel spin.

The correlations of electrons in NAOs (coulomb and ex-
change) are grouped according to centers, and the sums of intra-
and intercenter correlations obey eqs 21 and 22. An emphasis
is given for the two-center coulomb correlations, because,
according to fundamental chemical intuition, chemical bonds
are composed essentially of antiparallel spin electron pairs. The
investigation of eq 21 leads to the conclusion that in the two-
center terms, the attractive interactions are more important than
the repulsive ones. These globally attractive two-center interac-
tions are balanced by the repulsive one-center ones. The extent
by which the attractive interactions are larger than the repulsive
interactions is determined by the magnitude of one-center
interactions. All of these conclusions are quite general because
they are based only on the assumption that one-center interac-
tions are repulsive, which must hold for most molecules.

The general trend is that the two-center coulomb and
exchange correlations are complementary: the corresponding
interactions show a remarkably opposite behavior, even though
both lead to same conclusions concerning chemical bonding.
In regions, i.e., in pairs of centers as (1,2), (2,3), (3,4), and (1,4),
where the interactions of antiparallel spin electrons are attractive,
those of parallel spin electrons are repulsive; exactly the opposite
holds for pairs of centers (1,3) and (2,4). These conclusions
are completely consistent with usual pictures for chemical
bonding, involvingR,â pairs that are disposed into alternating
R,â schemes, as well as the bonding schemes of mesomer
structures provided by VB theory (see Figure 1).
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The effects of CI are very crucial in some cases concerning
the probabilities of finding electron pairs of antiparallel spin
and in all cases of coulomb correlations; however, the prob-
abilities for parallel spins and exchange correlations, in general,
are not so sensitive.

The defined coulomb or Fermi holes on centers (i.e., in groups
of NAOs) have suitable properties (that is their sums is equal
to 0 or -1, respectively) and provide useful information for
the corresponding conditional probabilities. The further grouping
of centers (and the corresponding correlations) into bonds allows
the calculation of the fluctuations of the electronic populations
in one bond, and thus to the quantitative estimation of
delocalization. In the case of butadiene, it is found that the
inclusion of coulomb correlation increases the localization of
one bond.

From topological methods17 dealing with exchange correla-
tions, it is found that the probability for parallel spin electrons
is high at the boundaries between regions in which electrons
form pairs of antiparallel spin. This agrees with the finding in
this work (see Table 2) that the probabilities forR-R pairs in
regions defined by centers (2,3) and (1,4) are higher (both are
about 10 times larger) than the same quantities concerning
regions (1,2) and (3,4), i.e., bonded regions involving mainly
antiparallel spins. As expected, the opposite holds for the
absolute values of the (negative) exchange correlations.
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